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Synopsis 

The yield-line method of analysis provides a powerful means of identifying the ultimate load 
carrying capacity of reinforced concrete slabs. Benefits of the yield-line method are that it will 
often identify additional reserves of strength when applied to the analysis of existing slabs, and 
to highly economic slabs when used in design. Traditionally a hand-based method, the yield-line 
method is easy to apply to problems involving simple slab geometries and loading regimes. 
However, when these become more complex it can be difficult to identify the critical yield-line 
pattern. To address this, the method has now been systematically automated. The automated 
method quickly identifies the critical mechanism (or a close approximation of this) and 
corresponding load carrying capacity, providing engineers with a powerful new computer-based 
tool for the analysis and design of concrete slabs. In this article the discontinuity layout 
optimisation (DLO) procedure which has been used to automate the yield-line method is briefly 
described and then applied to various example problems.  

Introduction 

Reinforced concrete slabs are a feature of many modern buildings and bridges. When designing 
or assessing a reinforced concrete slab, elastic analysis methods have become popular in recent 
years, largely due to the availability of efficient computer-based implementations (e.g. using 
grillage analysis or finite element analysis techniques). Elastic methods are therefore now often 
used both to estimate slab deflections under service loads (to establish the serviceability limit 
state, SLS) and to analyse a slab at failure (to establish the ultimate limit state, ULS).  

However, a standard elastic analysis does not take account of the redistribution of moments 
that takes place after yielding of the reinforcement in a slab. This means that an elastic analysis 
may provide a grossly over-conservative estimate of ULS capacity. In cases when the ULS is 
critical this is likely to lead to more material (i.e. more concrete and/or steel reinforcement) 
being specified in a design than is necessary. To address this a non-linear analysis (e.g. a 
non-linear finite element analysis) could be performed; however this type of analysis tends to 
be demanding in terms of operator expertise and computer resources, and is generally not 
considered suitable for routine use. Alternatively a much simpler plastic analysis method, such 
as the yield-line method, could be used. However, the lack of an efficient computer-based 
implementation of the yield-line method has reduced its popularity in recent years.  

The term ‘yield-line’ was first coined by Ingerslev1 in the very first article to appear in The 



Structural Engineer in 1923. Subsequently Johansen2 developed the theory underpinning the 
general yield-line method, later shown to be an ‘upper bound’ plastic analysis method within 
the context of the then emerging plastic theorems3. Since a reinforced concrete slab generally 
contains a low percentage of reinforcement, the section will generally yield in flexure in a 
ductile manner, thereby justifying the use of plastic methods. Benefits of the yield-line method 
are that it will often identify additional reserves of strength when applied to the analysis of 
existing slabs, and to highly economic slabs when used in design4.  

The traditional hand-based method involves postulating a yield-line pattern (failure 
mechanism) and then using the work method to compute the corresponding load carrying 
capacity. However, due to the upper-bound nature of the yield-line method, a range of 
yield-line patterns will often need to be explored, which can be time-consuming. Furthermore, 
there is often the concern that the critical pattern may have been missed, and consequently 
that an unsafe estimate of load carrying capacity has been computed. This has prompted many 
practitioners to turn to computer-based elastic methods, which provide demonstrably safe, 
albeit frequently over-conservative, ULS predictions.  

However, the yield-line analysis method has recently been systematically automated, thereby 
allowing the critical yield-line pattern (or a very close approximation of this) to be reliably 
found. This means that practitioners can now apply the yield-line method with confidence, even 
when slabs with complex geometries and/or loading regimes are involved. Since the yield-line 
method considers only flexural failure, additional checks (e.g. for punching shear failure and/or 
serviceability limit state deflections) will however still be required.  

This article briefly describes the traditional process of yield-line analysis and then explains how 
it has been possible to systematically automate this. The new automated method is then 
applied to various practical example problems. 

Traditional hand-based yield-line analysis  

The yield-line method can straightforwardly be applied to problems involving simple slab 
geometries and loading regimes. The first step is to postulate a yield-line pattern, following 
basic rules to ensure that this is geometrically compatible (e.g. see Kennedy and Goodchild4). 
Figure 1 shows a sample yield-line pattern for a reinforced rectangular slab with two simple 
supports and two free edges, and subject to uniform pressure loading. 



 

Figure 1: Example yield-line pattern for a rectangular slab with simple supports and free edges 

The second step involves performing calculations to determine the load or load factor required 
to cause collapse (or, in the case of design, the moment capacity required to support the 
applied load). The work method is commonly used to do this; in this case the mechanism is 
perturbed and external work done by applied loads is equated to the internal work done along 
yield-lines: 

 External work (E) = Internal work (dissipation, D) 
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Where  is a load factor, to be determined, q is the specified pressure loading per unit area, a is 

the area of a given rigid slab region, () is the displacement of the centroid of this slab region, 

which can be expressed as a function of yield-line rotations . Also mp is the plastic moment of 
resistance per unit length of the slab, and l is the length of a given yield-line. 

For the example shown in Figure 1, assuming lengths AB = 9m, BC = 6m, and isotropic moment 
of resistance mp, sample calculations are given below. 

External work:  

      xqaaalqaaaqE ABbaBCABbbaa 6162=/2/3/3== 221222211    (2) 

 

Internal work:  

  xxmxmlmD ABpABpDADAp  36/==   (3) 

To determine the minimum load factor , the critical value of x must be found. For small 
problems this can be done by calculus or by trial and error (e.g. for this example x can be found 
to be 4.813m, and, when mp = 20kNm/m and q = 1kN/m2, the computed load factor can be 
calculated to be 1.847). For larger problems, mathematical optimisation can be used; in this 



case it is usual to pose the problem in a slightly different way, setting the unfactored external 
work done by the external loads to unity, giving the following mathematical optimisation 
problem:  

minimise )(=    lmp  

(4) 
subject to 1=)(qa  

Equation (4) is equivalent to Eq. (1), but with the additional stipulation that the value of  is to 

be minimised. Also, to ensure positive dissipation along yield-lines, new variables +, - have 

been introduced, where +-, and where +, - > 0. This modified form will be used in 
the next section. 

The new automated method  

In the simple yield-line analysis problem considered in the previous section a geometrically 
compatible yield-line pattern was pre-defined, and all that was required was to adjust the 
geometry of the mechanism (i.e. the distance x) to determine the critical case. However, in 
general, the critical yield-line pattern will not be known in advance, and the challenge is to 
identify this (or a good approximation of this) from a large set of possible geometrically 
compatible patterns. 

One possible approach is to discretise the slab using rigid finite elements, with potential 
yield-lines lying along element boundaries5,6. However, with this approach the set of 
geometrically compatible patterns from which the most critical can be chosen will be relatively 
small. Also, specially tailored meshes must be used in order to e.g. identify fan type 
mechanisms, which is clearly unsatisfactory. 

An alternative approach involves considering the yield-line discontinuities directly, and 
enforcing the geometric compatibility requirement at the end points of yield-lines (nodes). 
Denton7 demonstrated that compatibility can be enforced for a yield-line mechanism in 
essentially the same way as equilibrium is enforced in a truss (Figure 2). Gilbert et al.8 then 
showed that the long-established ‘layout optimisation’ technique, used to identify the optimum 
topology of a truss, could also be used to identify the critical yield-line pattern, and 
corresponding collapse load (or load factor) of a slab. Steps in the process are shown in Figure 
3. 
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Figure 2: Analogy between (a) truss equilibrium, and (b) slab compatibility at a node 

For a problem comprising n nodes and m potential yield-lines, the resulting ‘discontinuity layout 
optimisation' (DLO) formulation can be written as: 
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where Eq. (5b) enforces for each node the geometric compatibility constraint shown in Figure 2 
(assuming there are mi yield-line connections at node i). Also, Eq. (5c) enforces the unit external 
work constraint (see Gilbert et al.8 for further details). This is a linear optimisation problem for 
which highly efficient solvers exist. This means that problems involving thousands of nodes can 
be solved in a matter of seconds on a modern desktop PC. 

An interesting feature of the DLO procedure is that, at points where potential yield-line 
discontinuities crossover one another (e.g. see instances of this in Figure 3(c)), compatibility 
requirements are implicitly enforced. Also, since the location of each potential yield-line is 
known in advance of the optimisation process, it is possible to locally ascribe mp values, making 
it straightforward to model slabs with orthotropic or skew reinforcement. 



    

(a) Step 1: Define the 
geometry, boundary 
conditions, loads and 

slab properties. 

(b) Step 2: Discretise 
the slab using nodes. 

(c) Step 3: Interconnect 
the nodes with 

potential yield-line 
discontinuities. 

(d) Step 4: Use 
optimisation to identify 

the subset of 
discontinuities forming 
the yield-line pattern. 

 

(e) Step 5 (optional): Post-processing to enable visualisation of the deformed shape 

Figure 3: Steps in the automated yield-line analysis procedure 

Example 1: Benchmark square slabs 

To demonstrate the effectiveness of the automated method it is first applied to various 
benchmark square slab problems, for which known solutions are available. In each case, the 
commercially available LimitState:SLAB software9 which implements the DLO formulation 
already outlined was employed. Although some of these problems have been found to be 
difficult to solve when using rigid finite elements, here solutions well within 1% of the known 
values were obtained within a few seconds on a modern desktop PC. 

Considering first the case of a slab with uniform pressure load and simple supports, Figure 4(a) 
shows that the familiar ‘X’ shaped yield-line pattern has been identified as being critical. In this 

case the exact load factor of 24 ( mp / qL
2, where L is the side length of the slab) is obtained 

even when very small numbers of nodes are employed. (Though note that a more complex 
pattern, incorporating corner fans, is identified when the slab is provided with only bottom 
reinforcement.) 

Figure 4(b) shows the identified yield-line pattern for the uniform pressure load with fixed 



supports case (also considered in Figure 3). Here a load factor of 43.052 is obtained, which is 
quite close to the exact load factor10 of 42.851. Alternatively, an even closer value can be 
obtained simply by using more nodes (e.g. a solution of 42.857 was reported by Gilbert et al.8). 
Note that in this case the identified yield-line pattern is somewhat more complex than the 
patterns typically considered in a hand analysis. This is partly because in a critical yield-line 
pattern positive and negative yield-lines will be orthogonal to each other, something that, for 
sake of simplicity, is often ignored in a hand analysis. In addition, the use of a fixed nodal grid in 
the DLO method means that a single yield-line in the true critical yield-line pattern may be 
approximately represented by several yield-lines in close proximity to one-another. 

Finally, Figure 4(c) shows the identified yield-line pattern for the central point load with fixed 

supports case; in this case the computed load factor of 12.624 ( mp /Q, where Q is the 
magnitude of the point load) is close to the exact load factor2 of 4π. 

   

(a) (b) (c) 

Figure 4: Identified yield-line patterns for uniformly loaded square slabs with (a) simple and (b) fixed 
supports; (c) pattern for square slab with fixed supports and central point load 

Example 2: Building with irregular floor plate 

Hand-based yield-line analysis becomes particularly problematic when complex slab geometries 
are involved. Kennedy and Goodchild4 provide useful advice on the types of mechanism that 
should be considered, though to account for the increased level of uncertainty involved they 
recommend that the moment capacity be increased by 15% for the purposes of design, rather 
than their normal recommended value of 10% (which itself has recently been challenged11). 

An example considered by Kennedy and Goodchild4 is the relatively complex floor plate of a 
London apartment block (see Figure 5). The irregular geometry requires that many possible 
yield-line patterns are considered by hand, which is a time consuming process. Conversely, with 
the new automated method it is possible to quickly obtain a close approximation of the critical 
yield-line pattern and associated load factor; see Figure 5(b). 



  

(a) 

 

(b) 

Figure 5: Building with irregular floor plate, (a) external view, (b) identified yield-line pattern 
(obtained assuming simple supports at edges of blade columns) 

Example 3: Beam and slab bridge deck 

Some years ago Middleton12 suggested that many highway bridges have a low assessed load 
carrying capacity not because of inherent weakness, but due to the conservative nature of the 
elastic methods used to assess them. In a study of 21 local authority bridges initially assessed to 



have a capacity of less than 17 tonnes, it was found that over 80% had the capacity to carry at 
least 38 tonne vehicles when assessed using plastic (yield-line) methods. To facilitate rapid 
assessment of such bridges a practical software tool, COBRAS, was developed. However, 
although COBRAS considers a relatively large number of predefined yield-line patterns, there is 
still a concern that the critical mechanism may be missed. (To address this Jackson and 
Middleton13 recently developed a more general plastic analysis procedure; however, obtaining 
the critical yield-line pattern necessitated a manual interpretation step.) 

Figure 6 shows an example of a four-wheeled vehicle traversing a beam and slab bridge deck, in 
this case assuming that the wheels act as point loads, and that both beams and slabs behave in 
a plastic manner. Using the new automated method it is evident that a relatively complex 
yield-line pattern, of the sort that would very unlikely to be identified by hand, is identified as 
being critical. 

 

(a) 

 

(b) 

Figure 6: Beam and slab bridge deck, (a) identified yield-line pattern at critical vehicle position; (b) 
corresponding deformed shape 



Conclusions 

The yield-line method provides a powerful means of analysing the ultimate (collapse) limit 
state. Benefits of the yield-line method are that it will often identify additional reserves of 
strength when applied to the analysis of existing slabs, and to highly economic slabs when used 
in design. However, the lack of a general computer-based implementation has limited its 
popularity in recent years. To address this the yield-line method has now been systematically 
automated, using discontinuity layout optimisation (DLO). This provides structural engineers 
with a viable alternative to the elastic analysis methods that have become prevalent for 
collapse analysis in recent years, which can yield excessively conservative results.  
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